“可降解” 塑料已然成為環(huán)保新風(fēng)尚,然而,從生產(chǎn)使用到分揀處理,“可降解” 帶來(lái)的問(wèn)題遠(yuǎn)比解決得多。不僅成本高,不如傳統(tǒng)塑料耐用;變成廢棄物后,還需要非常細(xì)致的分類(lèi)收集和工業(yè)堆肥環(huán)境才能真正實(shí)現(xiàn) “降解”,然而,這兩項(xiàng)條件在大部分地區(qū)目前難以提供,讓我們有理由質(zhì)疑,它是否應(yīng)該走出實(shí)驗(yàn)室,走向大規(guī)模應(yīng)用。
可降解塑料能解決一次性包裝的問(wèn)題嗎? 圖源:pexels.com
撰文 | 于楊今奇
責(zé)編 | 馮灝
● ● ●
為迎接即將到來(lái)的2022北京冬奧會(huì),中國(guó)石化宣布其所屬北京石油將向冬奧會(huì)延慶賽區(qū)所在地張山營(yíng)鎮(zhèn)捐贈(zèng)10萬(wàn)只可降解塑料袋,以減少賽事運(yùn)行期間的塑料污染。這些塑料袋的材料是PBAT(己二酸丁二醇酯和對(duì)苯二甲酸丁二醇酯的共聚物),在堆肥條件下可降解 [1]。隨著公眾對(duì)塑料污染問(wèn)題認(rèn)識(shí)的提升,可降解塑料被視為解決白色污染的金鑰匙。
然而,越來(lái)越多的研究開(kāi)始質(zhì)疑可降解塑料作為解決塑料污染方案的有效性 [2]。比如,所謂的可降解塑料,在什么樣的情況下可以得到降解?它對(duì)當(dāng)前垃圾處理設(shè)施系統(tǒng)將產(chǎn)生怎樣的影響?
在回答這些問(wèn)題之前,我們不妨先來(lái)看看 “可降解塑料” 的概念、原理、條件和目前的實(shí)際應(yīng)用狀況。
拋開(kāi)條件談降解,就像拋開(kāi)劑量談毒性。
可降解性的條件包括很多方面——溫度、濕度、氧氣、微生物群體等都要考慮在內(nèi)。另外,時(shí)間因素至為關(guān)鍵。普通化石基的塑料,比如常見(jiàn)的塑料瓶,在自然環(huán)境中經(jīng)過(guò)450-500年也可以降解,但這對(duì)于我們當(dāng)前所談的環(huán)境保護(hù)毫無(wú)意義 [3]。
從材料分子結(jié)構(gòu)的角度來(lái)看,降解的過(guò)程,實(shí)際上就是干擾一般塑料的化學(xué)結(jié)構(gòu),即將聚酯長(zhǎng)鏈碳鍵分解成短鏈,再分解成二氧化碳、水和生物質(zhì),安全回歸自然界的物質(zhì)循環(huán)。
圖1 降解的過(guò)程 | 圖源:文獻(xiàn)[4]
市面上常見(jiàn)的大部分塑料都屬于不可降解塑料,比如聚丙烯(PP)、對(duì)苯二甲酸乙二醇酯(PET)、聚氯乙烯(PVC)等。它們可以回收再生,但是若丟棄在填埋場(chǎng),一般需要幾百年才能降解 [5]。
常被提起的塑料降解一般有兩種方式,光氧降解和生物降解。鑒于光氧降解目前爭(zhēng)議很大(如下表格所示),本文著重探討生物降解。
光氧降解(oxo-degradable)一般通過(guò)在傳統(tǒng)化石基塑料中加入添加劑,使其在有氧、光照或高溫下加速碎裂。雖然光氧降解塑料一般在幾個(gè)月或幾年內(nèi)就可以碎片化,甚至碎化到肉眼不可見(jiàn)的程度,但碎裂的塑料殘留在環(huán)境中會(huì)逐漸變成微塑料(通常指粒徑小于5毫米的塑料微粒)。目前還沒(méi)有證據(jù)證明微塑料可以在短時(shí)間內(nèi)完全降解,因此,光氧降解爭(zhēng)議重重,有很大的 “洗綠” 嫌疑。此外,光氧降解塑料在實(shí)際中并不耐用,且在用后既不能被回收再生,也不能被堆肥,反而對(duì)兩種處理方式都會(huì)造成干擾——降低再生塑料性能,污染堆肥產(chǎn)物。全球各大品牌(例如聯(lián)合利華、百事可樂(lè))、研究機(jī)構(gòu)和公益機(jī)構(gòu)目前都在倡議禁止這種塑料的生產(chǎn) [8],直到有證據(jù)證明其在短時(shí)間內(nèi)可以完全降解 [9]。
生物降解,指材料在特定環(huán)境下,通過(guò)微生物作用,完全轉(zhuǎn)化成二氧化碳和水??梢詫⒕埘ザ替溩兂啥趸嫉奈⑸锇?xì)菌、真菌和原生生物, 它們分泌的一種酶可將聚酯鍵分解 [4]。
目前,市面上號(hào)稱(chēng)可生物降解的塑料超過(guò)20種 [6]。人們常把它與生物基塑料(成分來(lái)自可再生生物資源)混淆,實(shí)際上,可生物降解塑料既可以是生物基,也可以是化石基(成分來(lái)自不可再生的化石資源)。
生物基塑料常以木薯、玉米和甘蔗等作為原料 [7]。需要明確的是,并不是所有生物基塑料都可生物降解,比如,在巴西以甘蔗為原料大規(guī)模生產(chǎn)的bio-PE就不可降解 [4]。而化石基塑料大部分都不可生物降解。當(dāng)然,也存在例外,比如聚己內(nèi)酯(PCL)、聚丁二酸丁二醇酯(PBS)和己二酸丁二醇酯和對(duì)苯二甲酸丁二醇酯的共聚物(PBAT)。
三類(lèi)可規(guī)模生產(chǎn)的生物降解塑料
根據(jù)歐洲生物塑料市場(chǎng)數(shù)據(jù)報(bào)告,2019年生物降解塑料的全球總產(chǎn)能達(dá)117萬(wàn)噸,占全球塑料年產(chǎn)(3.6億噸)的0.3% [10]。目前,大規(guī)模商業(yè)生產(chǎn)的主要有三種 [10]。
一是以植物淀粉為原料的淀粉塑料和聚乳酸(PLA)[10]。淀粉便宜、產(chǎn)量高、工藝簡(jiǎn)單,弊端是不防水,且依賴(lài)糧食作物為原料,大量占用耕地。當(dāng)前,產(chǎn)業(yè)界也在研究從農(nóng)業(yè)和工業(yè)廢棄物(比如玉米棒和纖維素)等中提取原料 [11]。
二是以石油副產(chǎn)品或生物為原料的二元酸二元醇共聚酯(PBS、PBSA、PBAT,下稱(chēng)PBS類(lèi)塑料),這類(lèi)塑料的產(chǎn)能也在逐年遞增 [12]。
三是聚羥基脂肪酸酯(PHA),是微生物以糖類(lèi)或油脂為原料在發(fā)酵過(guò)程中自身代謝合成的,目前產(chǎn)能尚少,全球僅25,000噸。但因?yàn)轭?lèi)似PLA,有著以農(nóng)業(yè)副產(chǎn)品和其它有機(jī)廢棄物為原料的潛力,PHA的前景很被看好 [10]。
生物可降解塑料的價(jià)格當(dāng)前普遍高于傳統(tǒng)塑料,但隨著產(chǎn)能增加帶來(lái)的規(guī)模化效應(yīng)和油價(jià)波動(dòng)對(duì)傳統(tǒng)塑料的影響,可降解塑料的價(jià)格也越來(lái)越有市場(chǎng)競(jìng)爭(zhēng)力 [13]。
澳大利亞塔斯馬尼亞大學(xué)極地海洋生態(tài)學(xué)博士賈柊楠告訴《知識(shí)分子》,可降解塑料在中國(guó)目前最常見(jiàn)的使用形式是膜類(lèi),尤其以可降解地膜的試驗(yàn)和推廣為主導(dǎo),在城市區(qū)域則以超市購(gòu)物袋和食品包裝等應(yīng)用最為廣泛。
塑料垃圾若不能被有效收集而散落在自然環(huán)境中,會(huì)造成極為嚴(yán)重的負(fù)面影響。收集后的塑料垃圾常見(jiàn)的處理方式有填埋,焚燒,回收和降解。
填 埋
填埋是最不理想的處理方式,不僅污染環(huán)境,威脅公共健康,可降解塑料被填埋后,會(huì)與其他有機(jī)垃圾一同釋放甲烷。而等量甲烷對(duì)溫室效應(yīng)的貢獻(xiàn)是二氧化碳的25倍 [10],加劇氣候變化。因?yàn)槿狈λ芰辖到馑璧臏囟?、濕度等條件,在填埋場(chǎng)中,可生物降解的塑料與不可降解塑料的 “可降解性” 事實(shí)上幾乎無(wú)差別。
中國(guó)合成樹(shù)脂協(xié)會(huì)塑料循環(huán)利用分會(huì)技術(shù)副會(huì)長(zhǎng)汪軍告訴《知識(shí)分子》,“即使假設(shè)可降解塑料在自然中降解只需要二十年的時(shí)間,比不可降解塑料短得多,然而,在其未能被完全降解的二十年里,對(duì)自然界生態(tài)和生物造成的危害與其他塑料并無(wú)區(qū)別?!?/span>
焚 燒
焚燒發(fā)電或發(fā)熱的處理方式優(yōu)于填埋,尤其考慮到化石基塑料的熱值高于煤炭 [10],若僅從能源利用的角度,燃燒使用過(guò)的塑料比燃燒其他不可再生能源(煤炭、石油、天然氣)更為高效。
然而,同濟(jì)大學(xué)的研究團(tuán)隊(duì)在焚燒廠的爐渣中發(fā)現(xiàn)了很難應(yīng)付的微塑料 [15],研究估計(jì),每噸投入焚燒爐的垃圾就能產(chǎn)生360~10.2萬(wàn)個(gè)微塑料顆粒。換句話說(shuō),即使焚燒,也不能一勞永逸地解決塑料污染問(wèn)題。而且,若從資源角度看,塑料焚燒也很浪費(fèi),不可降解塑料和可降解塑料都被迫縮短了自己的使用周期,與下文提到的通過(guò)回收環(huán)節(jié)變成再生塑料相比,失去了循環(huán)利用的可能性。
回 收
相比焚燒對(duì)資源簡(jiǎn)單粗暴的處理方式,回收是目前普遍倡導(dǎo)的塑料垃圾解決方案?;豢山到馑芰?/span>(如PET)可以被大規(guī)?;厥赵偕?,再次投入塑料或紡織產(chǎn)品的生產(chǎn)??偛课挥谂餐姆诌x和回收解決方案提供商陶朗集團(tuán)循環(huán)經(jīng)濟(jì)業(yè)務(wù)副總裁常新杰告訴《知識(shí)分子》,“PET瓶回收再生在中國(guó)已成規(guī)模,據(jù)陶朗估計(jì)收集率已達(dá)85%;而可降解塑料目前主要針對(duì)一次性應(yīng)用場(chǎng)景的材料替代,而沒(méi)有關(guān)于用后的收集與再生利用的考慮,這樣就不見(jiàn)得比可再生利用的傳統(tǒng)塑料更好。”
常新杰介紹,現(xiàn)在不少后期處理公司的光學(xué)分揀設(shè)備可以將PBAT、PLA等可生物降解材料從PP和PE中識(shí)別出來(lái),然而,問(wèn)題在于,當(dāng)前很多產(chǎn)品并非單一材質(zhì),不同生產(chǎn)廠家在其產(chǎn)品中可能會(huì)混合PLA、PBAT和淀粉等不同材質(zhì),并且配比各不相同,當(dāng)前設(shè)備無(wú)法有針對(duì)性的識(shí)別,給后期分揀帶來(lái)了更多麻煩。
常新杰表示:“當(dāng)前,國(guó)內(nèi)進(jìn)入回收體系的可降解塑料體量不大,但若日后可降解塑料被大量使用,前端產(chǎn)品標(biāo)準(zhǔn)、垃圾分類(lèi)又不夠嚴(yán)格精細(xì),那么,可降解塑料便很有可能混入回收用塑料,甚至擾亂整個(gè)回收過(guò)程?!?/span>
相似原理,一般的紙質(zhì)食品包裝(比如一次性紙杯)都是由復(fù)合材料構(gòu)成,有一層塑料膜用于防水、防油,若不能有效分離,那么紙也會(huì)影響塑料回收。
在實(shí)踐中,使用后的可生物降解塑料必須進(jìn)入配套的降解渠道才有機(jī)會(huì)完成其降解使命。然而常新杰透露,目前在國(guó)內(nèi),這類(lèi)配套設(shè)施仍寥寥無(wú)幾。
可降解塑料當(dāng)前無(wú)法形成材料閉環(huán)
汪軍認(rèn)為,目前可生物降解塑料非常不成熟,或者說(shuō)絕大多數(shù)時(shí)候是一個(gè)偽概念。
其理由是,人們腦子中的 “降解” 概念是在來(lái)源于對(duì)自然的觀察,例如木材等有機(jī)體可以被自然存在的微生物完全降解,成為其他機(jī)體的營(yíng)養(yǎng),形成物質(zhì)閉環(huán),而目前 “可生物降解” 塑料等人造的聚合物,都是聚酯類(lèi)高分子,需要特定的水解條件進(jìn)行第一步化學(xué)降解,然后才有可能被微生物消化。
“這與自然降解是不同的。在自然界沒(méi)有進(jìn)化出以合成塑料為直接食物來(lái)源的微生物前,合成塑料走天然閉環(huán)的路,即把塑料扔給自然去降解吸收,不是對(duì)環(huán)境的負(fù)責(zé)任的做法?!?汪軍說(shuō)。
實(shí)驗(yàn)室中被研究的可降解塑料可以享受適宜的溫度、濕度、豐富的微生物種群,助力降解過(guò)程,但要走出實(shí)驗(yàn)室,可降解塑料面臨現(xiàn)實(shí)的 “關(guān)山重重” ——分類(lèi)、收集、處理——環(huán)環(huán)相扣,一環(huán)都少不得。
目前,國(guó)內(nèi)城市的垃圾分類(lèi)體系并不能實(shí)現(xiàn)可降解塑料的單獨(dú)儲(chǔ)運(yùn),若各種塑料殊途同歸進(jìn)入焚燒廠,那么消費(fèi)者花高價(jià)購(gòu)買(mǎi)可生物降解塑料就失去了環(huán)保意義 [6]。
退一步講,假設(shè)垃圾分離體系嚴(yán)格推行,后端降解設(shè)施還需要達(dá)到生物降解的條件(高效降解一般需要氧氣,50攝氏度的高溫和55%的濕度 [16])。目前,國(guó)內(nèi)大多數(shù)廚余垃圾的厭氧消化設(shè)施并不能有效滿足生物降解所需,比如缺少氧氣。
而堆肥是降解最常見(jiàn)的一種方式,最終可將聚酯通過(guò)生物過(guò)程轉(zhuǎn)為二氧化碳、水、礦物鹽和生物質(zhì),且不產(chǎn)生對(duì)自然環(huán)境(水、土壤)或動(dòng)植物有毒的物質(zhì)。根據(jù)歐盟的標(biāo)準(zhǔn) [17],在工業(yè)堆肥條件下,可堆肥材料須被自然存在的微生物完全分解,并滿足四個(gè)條件:
成分必須包含50%以上有機(jī)物,重金屬含量不超標(biāo);在堆肥條件下,90%的材料需在六個(gè)月內(nèi)完全降解;在堆肥條件下,十二周內(nèi)需碎片化至肉眼不可分辨的大?。?lt;2毫米);堆肥產(chǎn)物對(duì)植物生長(zhǎng)發(fā)芽(和蚯蚓)無(wú)害。
當(dāng)前,號(hào)稱(chēng)可堆肥的產(chǎn)品很難考證真實(shí)性,全球符合標(biāo)準(zhǔn)的工業(yè)堆肥系統(tǒng)也遠(yuǎn)遠(yuǎn)不及這類(lèi)塑料的產(chǎn)量。這些帶著可降解標(biāo)簽的 “綠色” 包裝,仍會(huì)流入自然環(huán)境,比如水系或土壤中。
汪軍認(rèn)為,“可降解塑料比普通塑料更容易碎片化,若大規(guī)模進(jìn)入環(huán)境,幾乎不可能再被重新收集,塑料污染問(wèn)題也會(huì)更加嚴(yán)峻?!?/span>
即使暫時(shí)忽視后端處理問(wèn)題,可降解塑料在使用階段也存在局限。
汪軍解釋說(shuō),現(xiàn)在可降解塑料和天然降解材料相比的不成熟,是天然材料的降解是有 “開(kāi)關(guān)” 機(jī)制的,“如樹(shù)葉在樹(shù)上時(shí)是不降解的,只有在落下后,即生命周期結(jié)束后降解才發(fā)生。” 他認(rèn)為,“可生物降解” 塑料沒(méi)有這個(gè)機(jī)制,它就面對(duì)一個(gè) “使用” 和 “降解” 的矛盾問(wèn)題?!翱山到馑芰咸幵诩炔蝗鐐鹘y(tǒng)不可降解塑料耐用,也不如全天然材料可降解的尷尬境地。” 汪軍說(shuō)。
人類(lèi)生存在地球上已有千百萬(wàn)年,而塑料的使用和普及不過(guò)在最近一個(gè)世紀(jì) [10]。在塑料被大規(guī)模使用之前,人們與產(chǎn)品包裝的關(guān)系并不似現(xiàn)在。保質(zhì)期短的食物常常在產(chǎn)地附近,以散裝的形式被銷(xiāo)售;人們帶著自家的油壺、米袋去糧油店采買(mǎi)口糧;精致且保質(zhì)期更長(zhǎng)的茶、餅干則以精美的金屬盒作為包裝,這些盒子大多會(huì)被主人留下,找到其他用途。
塑料無(wú)疑為我們帶來(lái)了很多便利,但并不是所有的塑料包裝都是必須的。
“塑料是人類(lèi)的產(chǎn)物,我們不要指望靠自然來(lái)解決人類(lèi)造成的問(wèn)題。我們既然造出塑料,就要盡量讓它形成閉環(huán),留在人的系統(tǒng)循環(huán),而非進(jìn)入自然系統(tǒng)大循環(huán)?!?汪軍表示。
隨著可降解塑料在實(shí)踐中的挑戰(zhàn)日益凸顯,2021年9月8日,國(guó)家發(fā)展改革委和生態(tài)環(huán)境部印發(fā)了 “十四五” 塑料污染治理行動(dòng)方案(“方案”)—— 完善塑料污染全鏈條治理體系,推動(dòng)塑料生產(chǎn)和使用源頭減量的同時(shí),也要科學(xué)穩(wěn)妥推廣塑料替代品 [18]。
“方案” 中提出要充分考慮可降解塑料制品的全生命周期資源環(huán)境影響,研究不同類(lèi)型可降解塑料的機(jī)理和影響,科學(xué)評(píng)估其環(huán)境安全性和可控性。
中國(guó)合成樹(shù)脂協(xié)會(huì)塑料循環(huán)利用分會(huì)、再生PET分會(huì)常務(wù)副會(huì)長(zhǎng)王旺對(duì)《知識(shí)分子》分析道,這份 “方案” 表明了政策層面對(duì)可降解塑料的態(tài)度。即可降解塑料的全生命周期環(huán)境影響、降解機(jī)制和安全可控性尚不清楚,且目前存在無(wú)序發(fā)展、產(chǎn)能盲目擴(kuò)張的現(xiàn)象,應(yīng)予以糾正。
如 “方案” 中提出,可降解塑料產(chǎn)業(yè)應(yīng)有序發(fā)展,合理布局,其應(yīng)用領(lǐng)域需要規(guī)范,降解條件和處置方式也需要明確。其中的政策信號(hào)可以理解為:“現(xiàn)在還不適合可降解塑料大規(guī)模推廣應(yīng)用”,王旺總結(jié)說(shuō)。
參考文獻(xiàn):(上下滑動(dòng)可瀏覽)
[1] 中國(guó)石化. “中國(guó)石化可降解塑料為北京冬奧會(huì)‘添綠’. 2021. http://www.sinopecgroup.com/group/xwzx/mtbd/20210915/news_20210915_310454240507.shtml[2] Jingkun Zhu, Can Wang. “Biodegradable plastics: Green hope or greenwashing? “ Marine Pollution Bulletin. Volume 161, Part B, December 2020. 111774[3] 新華網(wǎng). “垃圾的真相:塑料瓶降解要450年,人均垃圾產(chǎn)量該國(guó)居首“. 2019.[4] Maja Rujnic-Sokele and Ana Pilipovic (2017). Challenges and Opportunities of biodegradable plastics: A mini reivew. Waste Management & Research[5] Kunnika Changwichan, Shabbir H. Gheewala. “Choice of materials for takeaway beverage cups towards a circular economy”. Sustainable Production and Consumption. Volume 22, 2020. 34-44[6] 綠色和平. “破解‘可降解塑料’:定義、生產(chǎn)、應(yīng)用和處置”. 2020[7] S. Mehdi Emadian, Turgut T. Onay. “Biodegradation of bioplastics in natural environments”. Waste Management. Volume 59, 2017, 526-536[8] Sustainable Brands. “150 Companies, NGOs Call for Global Ban on Oxo-Degradable Plastics Packaging”. 2018. https://sustainablebrands.com/read/chemistry-materials-packaging/150-companies-ngos-call-for-global-ban-on-oxo-degradable-plastic-packaging[9] Ellen MacArthur Foundation. Oxo statement. https://www.newplasticseconomy.org/about/publications/oxo-statement[10] European Bioplastics. Bioplastics market data 2019.[11] Jiaxin Chan, Joon Fatt Wong, Azman Hassan, Zainoha Zakaria. “Bioplastics from agricultural waste”. Biopolymers and Biocomposites from Agro-Waste for Packaging Applications (pp141-169). Matthew Deans. 2020[12] S. Ayu Rafigah, Abdan Khalina, Ahmad Saffian Harmaen, Intan Amin Tawakkal, Khairul Zaman, M. Asim, M.N. Nurrazi and Ching Hao Lee. “A Review on Properties and Application of Bio-Based Poly (Butylene Succinate). Polymers (Basel). 2021 May; 13(9): 1436.[13] Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriette Bos. “Bio-based and biodegradable plstics – Facts and Figures”. Food & Biobased Research Wageningen. 2017[14] Vkingxl. Scrapyard metal waste. Pixabay[15] Zhan Yang, Fan Lv, Hua Zhang, Wei Wang, Liming Shao, Jianfeng Ye, Pinjing He. “Is incineration the terminator of plstics and microplastics. Journal of Hazardous Materials. Volume 401. 2021.[16] 聚烯烴人.“‘生物降解材料’國(guó)內(nèi)外標(biāo)準(zhǔn)及方法介紹” 生物降解材料研究院。2021. https://mp.weixin.qq.com/s/dRIl8U8vrZgeqvK5vOf4rA[17] STAR4BBI. Standards and Regulations for the Bio-based Industry. 2019.https://www.plasticseurope.org/en/about-plastics/what-are-plastics/history[18] Plastics: a story of more than 100 years of innovation. PlasticsEurope. https://www.plasticseurope.org/en/about-plastics/what-are-plastics/history.本文10月22日首發(fā)于《知識(shí)分子》(ID:The-Intellectual),獲權(quán)轉(zhuǎn)載。知識(shí)分子由非營(yíng)利公益組織北京市海淀區(qū)智識(shí)前沿科技促進(jìn)中心主辦,以傳播科學(xué)知識(shí)、弘揚(yáng)科學(xué)精神、促進(jìn)科學(xué)文化為使命,致力于關(guān)注科學(xué)、人文、思想。